S orthogonal matrices and S symmetries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Spectra and S-modules

There are several symmetric monoidal categories of “spectra” that are model categories with homotopy categories equivalent to the stable homotopy category. The most highly developed, and the first to be made rigorous, is the category M = MS of S-modules of [1]. Its objects are quite complicated, but the complication encodes computationally important information. A second such category is the ca...

متن کامل

S-constrained random matrices

Let S be a set of d-dimensional row vectors with entries in a q-ary alphabet. A matrix M with entries in the same q-ary alphabet is S-constrained if every set of d columns ofM contains as a submatrix a copy of the vectors in S, up to permutation. For a given set S of d-dimensional vectors, we compute the asymptotic probability for a random matrix M to be S-constrained, as the numbers of rows an...

متن کامل

Deriving boundary S matrices

We show how to derive exact boundary S matrices for integrable quantum field theories in 1+1 dimensions using lattice regularization. We do this calculation explicitly for the sine-Gordon model with fixed boundary conditions using the Bethe ansatz for an XXZtype spin chain in a boundary magnetic field. Our results agree with recent conjectures of Ghoshal and Zamolodchikov, and indicate that the...

متن کامل

S and U - duality Constraints on IIB S - matrices

S and U-duality dictate that graviton scattering amplitudes in IIB superstring theory be automorphic functions on the appropriate fundamental domain which describe the inequiv-alent vacua of (compactified) theories. A constrained functional form of graviton scattering is proposed using Eisenstein series and their generalizations compatible with: a) two-loop supergravity, b) genus one supersting...

متن کامل

Characterization and Properties of (R, S)-Symmetric, (R, S)-Skew Symmetric, and (R, S)-Conjugate Matrices

SIAM J. Matrix Anal Appl. 26 (2005) 748–757 Abstract. Let R ∈ C and S ∈ C be nontrivial involutions; i.e., R = R 6= ±Im and S = S 6= ±In. We say that A ∈ C is (R,S)-symmetric ((R,S)-skew symmetric) if RAS = A (RAS = −A). We give an explicit representation of an arbitrary (R,S)-symmetric matrix A in terms of matrices P andQ associatedwith R and U and V associatedwith S. If R = R, then the least ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2015

ISSN: 0024-3795

DOI: 10.1016/j.laa.2015.02.023